UNCLASSIFIED
_—

0 268 920

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED




NOTICE: When govermment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby ilncurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have fornilated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




[ ) ,\""/)
o (o
fop) L/

é.g)PTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDITIONS

BY
MARC NERLOVE AND KENNETH jJ. ARROW

TECHNICAL REPORT NO. 102
DECEMBER 11, 1961

PREPARED UNDER CONTRACT Nonr-225 (50)
(NR-047-004) '
FOR
OFFICE OF NAVAL RESEARCH

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Applied Mathematics and Statistics Laboratories

STANFORD UNIVERSITY g 1°°
Stanford, California b




OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDITIONS
by

Marc Nerlove and Kenneth J. Arrow

TECHNICAL REPORT NO. 102

December 11, 1961

PREPARED UNDER CONTRACT Nonr-225(50)
( NR-O4T-004)
FOR

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for
any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Applied Mathematics and Statistics Laboratories
STANFORD UNIVERSITY L340 ©
Stanford, California




— T — ] —— r——

*
OPTIMAL ADVERTISING POLICY UNDER DYNAMIC CONDI IIONS

by

Marc Nerlove and Kenneth J. Arrow
Stanford University

Advertising expenditures are similar in many ways to investments in
durable plant and equipment. The latter affect the present and future
character of output and, hence, the present and future net revenue of
the investing firm. Advertising expenditures affect the present and
future demand for the product and, hence, the present and future net
revenue of the firm which ad.vertises.l In a previous paper, Dorfman and
Steiner [4] have given the necessary conditions for maximum net revenue
when: (a) price and advertising expenditures are the only variables
affecting the demand for the product; (b) current advertising expen-
ditures do not affect the future demand for the product, and (c) the
decision-maker is a monopolist who can determine both price and
advertising expenditures. They have also extended their analysis to

cover the case in which the quality of the product is variable.
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In what follows, the Dorfman-Steiner model is extended to cover
the situation in which present advertising expenditures affect the
future demand for the product. It is shown that, under plausible
assumptions, the necessary conditions for a maximum of the present
value of future net revenues lead to a decision rule which is similar
to that actuelly used by many firms. The Dorfman-Steiner model is a

special case of the model presented here.

1. Formulation of the Model and the Optimal Price Policy

The demand for the output of an individual firm or of an industry
depends on advertising expenditures in addition to the price of the
product, consumer incomes, and the prices of competing or complementary
products. Advertising expenditures may shift the demand function by
adding new customers, those who may never have consumed the product
before in the case of an industry, or those who have previously consumed
the product of another firm in the case of an individual firm. Such
expendi tures may also alter the tastes and preferences of consumers and
thereby change the shape of the demand function as well as shift it.

For example, "brand" advertising may make the price elasticity of demand
for the brand advertised lower than it would otherwlse be. On the other
hand, the attraction of new customers by means of advertising and the
consequent broadening of the market may make demand more sensitive to
price.2

Regardless of its precise effects on the demand function,
advertising expenditure at any one time may be expected to lose its

effectiveness in subsequent periods. An advertising campaign conducted

now may bring a hundred thousand customers into the fold today, but




next month or next year many of these will have drifted off. Other
firms and other industries do not stand still but also commit funds to
advertising; these campaigns in turn draw customers to the products or
brands advertised and away from the product or brand initially considered.
Furthermore, permanent changes in consumer tastes and preferences are
difficult to effect; while a strenuous advertising campaign may induce a
change in tastes and preferences for a time, there is a tendency for the
preferences of consumers to return to their old pattern. On the other
hand, the effects of a given advertising campaign, both upon the number
of consumers and their tastes, tend to persist for a considerable period
following the campaign, albeit, for the reasons given, to a steadily
diminishing extent.3

One possibility of representing the temporal differences in the
effects of advertising on demand would be to include a number of dated,
past advertising outlays in the demand function. However, such an
approach is not especially useful. A more promising analytical approach,
and one which has considerable intuitive appeal, is to define a stock,
which we shall call good will and denote by A(t) , and which we
suppose summarizes the effects of current and past advertising outlays
on demand. The price of a unit of good will, we shall suppose, is Sl,
so that a dollar of current advertising expenditure increases good will
by & like amount.h On the other hand, a dollar spent some time ago
should, according to our previous argument, contribute less. One possible
way of representing this lesser contribution is to say that good will,
like many other capital goods, depreciates. If we further assume that

>

current advertising expenditure cannot be negative” and that depreciation
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occurs at a constant prcportional rate, 8 , we have
(1) A+8A=2a>0 ,

where a 1is current advertising outlay, a and A are understood to
be functions of time, and the dot denotes differentiation with respect
to time. Equation (1) states that the net investment in good will is the
difference between the gross investment (current advertising outlay) and
the depreciation of the stock of good will.6

We are now in a position to formulate our model: Let q(t) be the
rate at which purchases are made at time t , p(t) +the price charged,
and z(t) other variables not under the control of the firm such as
consumer incomes, population, and the prices of substitute and complemen-
tary products. The quantity demanded is assumed to depend on p(t) ,
A(t) , and z(t) :
(2) q = £(p,A,z)
The rate at which total production costs, c(t) , are incurred is
assumed to be a function of output:
(3) c(t) = c(a)
Let r(t) be the rate at which revenue net of production costs and

current advertising outlays accrues to the firm; then

(%) r(t) = pf(p,A,z) - C(q) - a

R(P:Aiz) -a ,

where R is revenue net of production expenses only. We assume that
the firm attempts to maximize the present value of the stream of revenues
net of both production expenses and advertising costs by appropriate price

and advertising policies over time. That is, for a given initial value

-l
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of A* ,

A(0) = A,

the time paths of p and A are chosen to maximize

(5)  v{pa} = foo e”®[R(p,A,2) - alat ,
o

subject to (1), where «a is a fixed rate of interest. Note that V 1is

a functional depending on the whole time paths of p and A . The
optimal policies must satisfy the initial conditions p(0) = P, and
A(0) = A,

It is important to note that the optimal policies need not be
continuous functions of time. For example, suppose that A can be chosen
without any restriction such as (1) and that z 1is fixed. The initial
stock of good will does not, then, constitute an effective constraint.
Thus the optimal policies at any time will be made under the same
conditions and must therefore be the same, i.e., constant. Since the
optimal choice of A may not be AO , there will be a discontinuity at
t = 0. The optimal policy will be to increase or decrease A at once
to its optimal level and will therefore imply an infinite instantaneous
rate of current advertising outlays, a(0) . For such paths, the integral
in (5) must be interpreted with some care.

Since net revenue depends only on current price, it is clear that if
there are no restrictions on price changes, the initial price does not
matter. Furthermore, the maximum of V can be found by first maximizing
it with respect to price, holding A fixed, and then maximizing the
result with respect to A by an appropriate choice of the time path of a .

Thus, optimal price policy is determined by maximizing current net revenue.

-5-




with respect to price, i.e., by equating marginal gross revenue to

marginal production costs at all times.:

(6) (p - cr) LBAZ) | £(p,0,2) =0 .
If we let
_ _pof
"l"f&

be the elasticity of demand with respect to price, (6) can be written

(6') p=nc'/(n-1) ,
the usual price formula for a monopolist. If we solve (6) for the optimal
price policy % as a function of A and 2z ,

o)

p(t) = P(A,2) ,

and. insert the result in (5), we obtain a new problem, namely, to maximize

(7) v {a} = foo e"®[R(A,z) - alat ,
o

subject to (1) and the initial condition A(O) = A, - DNote that (1)
determines a 1if A is given; hence, an optimal solution for A gives

an optimal solution for a

2. Determination of Optimal Advertising Policy7

Since Ao is fixed, maximizing the surplus
8 A
(8) s{A}=v{A} - A,
subject to (1) and A(0Q) = A, 1is equivalent to the problem stated in

the previous section. Expanding (8) by means of (1) and (7), we have
Q0 R .

(9) S{A} =/ e "% [R(A,z) - A - & Aldt - A,
o

o0

00 R 0
=f e-at'[R(A,z) -8 Aldt - [Ao +f e 2F A dt] .
o]

o

Eon
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Integrating the second term on the right by parts, we find

Qo o0

- Qo
(10) A, +/ e ™ Aat=aA + [e-ot A(t)]o + af e A at
(o] (o]

QO

= lUm [e"% a(t)] + a/ e Aat .
o

t - oo

Substituting in (9), we obtain

(11) s{A} = foo e'at[ﬁ(A,z) - (a+ &)Alat - t11m [e~% A(t)]
[o] - Q0

The function

(12) Tr(A,2) = R(A,2) - (@+8)A

may be called the net "profit" function; if good will were ordinary
capital it would represent what was left of revenue net of production
expenses after deduction of interest and depreciation charges on
capital.

We make three assumptions:

Assumption 1: The limit  1im [e ™ A(t)] exists.
t -2 00

Assumption 2: The net profit has a unique local maximum at a

value A% .
Assumption 3: For sufficlently large A , the net profit function

is decreasing.
We first assume that 2z 1s constant, so that we are considering a

stationary environment.

Under Assumptions 1-3, it can be shown that any optimal policy for
constant 2z must be bounded;9 for consider a policy, A , which is

~
unbounded. By Assumption 3, we can find another policy A which is
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bounded and for which S {A} has a higher value. Let AM be any
value greater than Ao for which the net profit function is decreasing

for A > AM . Then the policy

X=m1n{AM,A}

is bounded, and by construction,

(13) —IT(A:Z) > (A,Z)

for all t . Since A 1is bounded,

(14) m (e H(t)] =0< 1im  [e™% a(t)]
t =00 t = 00

It follows from (13) and (14) that
s{A} >s{a}

where A 1s any unbounded policy. Thus the class of all bounded
policies includes the optimal policy and we may restrict our considera-

tion to bounded policies for which 1lim [e'o‘t A(t)] vanishes.
t - 00

To maximize S {A} , 1t is desirable to make TT(A,z) as large as
possible, subject to the constraints (1) and A(O) = A . Assumptions
2 and 3 imply that T[[(A,z) has a unique global maximum which is also
the local maximum of || with respect to A . This occurs at the value

A* which may be determined by solving

(15) avajﬁ,z) ) RéAiz) - (a+8)

(p(A,z) - C'[£[P(A,z2),A,2]] 9 f[P(g,i),A,z]

- (a +85)

-8-
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for A where P(A,z) is determined by solving (6) for the optimal price
A 10

policy p as a functionof A and z .

We denote the solution to (15) as A* ; it is a function of z .

Since z 1is, in general, a function of time, A% has been defined as a

function of time. We will rei.r to the policy
(16) A(t) = A*[z(t)]

as being the instantaneously optimal policy. This policy can be given

8 relatively simple form. Let

31t

A
B=7F
the elasticity of demand with respect to advertising. If C' 1is

expressed in terms of p , from (6'), (15) can be simplified to

(17) A . —B
n(a + &)

Pa

This is a dynamic counterpart of Dorfman and Steiner's main result [4].
What is the relation between the policy designed to maximize net
profits at each instant of time and the optimal policy? First consider

the case where z(t) is constant over time so that the instantaneously

optimal policy is a constant, A% = A¥(z) . Clearly, the policy is
optimal for t > O , since

0 ot TT(A*,z)
(18) s [A*} = T{'(A*,z)/ e Pat = ~

o+

is as large as possible and not affected by what happens at the single
point t = O , and since, for (17), A* = O so that the constraint (1)

is satisfied:

(19) a* = 0+ 8 A* >0 ,




vhere a* 1is the current advertising outlay determined by A* , for
t >0 . Thus, the key question is: What happens at t = O ? If
Ax > Ao , we either have a jump in A* at t = O , in which case
A(O) and therefore a*(0) are infinite,ll or A* =0 . In either
case, the constraints are satisfied. On the other hand, suppose that
A* < A ; then A(t) has a downward jump at t =0 and A(O) , and

therefore A(O) are -o0o , contradicting (1) . We have proved

Theorem 1l: If A* is a point at which TT(A,z) reaches a maximum,
and if A% > Ao , then the optimal advertising policy for constant 2z 1is
a¥ = § A% for t >0 ,

and

for t = O

5 A 1f A* = A
a¥ = °

+00 if A¥ > Ao

A* is determined by equations (6) and (15).

Although good will can have an upward jump at t = O , as we have
already observed it cannot have a downward jump in view of the constraint
(1). what then is the optimal policy if A* < A, ? Clearly, T (A,z)
increases as we decrease A as long as A 1is greater than A¥* ; hence,
the optimal policy must be to decrease A as fast as possible. The

greatest rate at which this can be done is giver by the equality in (1):

(20) A+8A=0
or
(21) A=A )

At some time, t= 1 ,

namely,

-10-
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(22) T = % log

Then the firm will be in the same position looking forward from <t as it
would have been had A¥* = Ab to begin with; hence, the optimal policy
will be to continue with the stationary policy A(t) = A* . We have

proved:

Theorem 2: If A* is a point at which Tt(A,z) reaches a maximum,

and if A* < Ao , then the optimal advertising policy for constant 2z is

1 Ab
a* = 0 for 0<t < log i
and
A
a% = & A* for t > log —>
- 5 gA* 2

where A¥ is determined by equations (6) and (15).
The assumption of a constant 2z was used in the proofs of

Theorems 1 and 2 only to establish that A* satisfied (1) and that
e a(t)

approaches zero as t approaches infinity. Without any change in the

argument, we state

Theorem 3: Let A*(z) maximize TT(A,z) with respect to A. If

(A) 1lim g%t

t - 00

A*[z(t)] =0 ,

and

(B) A*[z(t)] + 8 A*(z(t)] >0 for all t ,

then the optimal policy, A(t) , may be described as follows:
(a) for A < A*[z(0)] , the policy consists of a jump at

t =0 to A*[z(0)]; A(t) = A*[z(t)] for t >0 ;

-11-
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(b) 1ir A = A*[z(0)], then A(t) = A*[z(t)] for all t >0 ;

8 for 0<t<T,

(c) it A > A*[2(0)] , then A(t) = A e
and A(t) = A*¥[z(t)] for t > 1, where 7T is a solution (if any) of the
equation

A, e™®% o ax[z(t)] ;

(-]

(4) 1f A > A*[z(0)] and A_ e’ © > ax[z(t)] for all

bt

t >0 , then A(t)=Aoe' for all t >0

In terms of current advertising expenditures, a*(0) = +00 1in case
(a), and a*(t) =0 for 0<t <t in case (c); otherwise, a¥*(t)
is given by the right-hand side of (B).

If (B) does not hold, the optimal solution becomes complicated.
It may become profitable to have A(t) fall below the instantaneously
optimal level, even at times when this policy does not violate (1),
in order to prepare for later intervals in which (l) is violated. A
special case of this problem, with no depreciation and a finite time
horizon, has been studied in [2], and even in this case the algorithm

cannot be described 'simply.

3. Some Comparative Dynamics of the General Solution for a

Stationary Environment

At the level of generality of the model described in the previous
sections, 1t is possible to discuss the effects of changes in the two
parameters, @ and &, on the optimal stationary policies 3 , a%
or A* , andon T , the time point at which these stationary policles
are achieved, wvhen z 1is assumed constant. To go further, it is
necessary to specialize the model and we shall do this in the next

section.

) o




First note that o and & enter symmetrically into equation (15)
which determines A* , and affect f: only insofar as they affect A% .
Hence, as far as the effects of variations in the two upon either f)
or A* are concerned, they are alike. Since TT(A,z) = ﬁ(A,z) - (a+ 8)A
has a unique Mmm (both global and local) with respect to A, an
increase in either o or & must decrease the optimal stationary policy
A* . Analytically, the result follows from the fact that, at A = A* ,
3®T/aa® - 3% R/aA? <0

The effect of a change in either o or & upon the optimal price
policy follows directly from the fact that an increase in either is
equivalent to a decrease in A* . Unfortunately, the effect of a
decrease in A¥* upon the optimal price depends upon its effect on the
elasticity of demand, as is well-known. Hence, we cannot specify the
result without more specific knowledge of the demand function.

Since Ao is fixed, the effect of a change in o or & upon =t ,

for 1 > 0 , may be determined by differentiating (22):

oT
da

OA*

(233) =-%W/A*>O , for 1T >0,

since >0 , A* >0 , and %<o

d
(23v) £='%{’S£:/A*+ T},for't)O s

vhich is positive or negative, according as

>

(24) g%*/A* < T, for T >0

2

JA*
since -y <0 Thus, an increase in the interest rate must always

postpone achievement of the stationary policy A* » but an increase in

-13-




the depreciation rate may actually hasten it. The reason is simply that
although an increase in the depreciation rate will lower A* still
further below As (assuming that it is belowvéo that =t # 0), it also
permits a faster approach with zero current advertising expenditures.
It may be observed that Jt/08 > 0 for < sufficiently small, i.e.,
Ab not too far above equilibrium, and negative in the contrary case.

The effects of changes in <« and & wupon optimal current advertising
expenditures in the case in which T = O (in other words, for the

stationary part of the solution) may be found by differentiating (19):

da* OA*

(25) X =035 <0 ,for 1=0,t>0,
and
26 Qa* s OA* 4% L, for 1=0,t>0 ,
L 38

which is positive or negative, according as

5 OA*|<
i S

that is, according as A% is inelastic or elastic with respect to & .
Again the ambiguity in the effect of a change in § results from the
fact that, although an increase in 8 reduces the optimal A* by
increasing the opportunity cost of good will, such an increase also
implies a higher level of current advertising expenditures to maintain

any given level of good will.

k. Some Comparative Dynamics of the Solution in a Special Case

It is plain from the preceding discussion that not much can be said
about the comparative dynamics of the solution to the optimal advertising

problem in the general case. If, however, one is willing to set his

-1k-




sights lower and specify particular forms for the demand and cost functions,
a great deal more can be deduced. In this section it will be assumed that
T = 0, that the total production cost function is linear in q , and

that the demand function is of a particular multiplicative form,

For still more definite results, we will assume that the demand function

is linear in the logarithms, which is a special case of (28):
(29) £(p,A,z) = kp™M AP 25 |

Previously, the symbols 1 and B have been defined as the elasticities
of demand with respect to price and good will, respectively; ¢ 1s the
elasticity of demand with respect to the variable, z, ; if 2z 1is income,
then § 1is the income elasticity of demand. J
Theorem 3 assures us that the optimal policy for all t will coincide
vith the instantaneously optimal policy defined by (31) and (33) below, at

least after a finite time period, provided A* neither increases nor

decreases too rapidly over time.

Since we are assuming that the total cost function is linear, the
marginal cost is constant.

(30) C' =y , a constant.

Under the multiplicative assumption (28), W depends only on the
variable p and B on A. Then, when (30) holds, (6') is an equation
involving only p (and not A or z), so that
(31) P =7 n/(y-1) 1is a constant with respect to A and Z.

Notice that (31) implies that n 1is also a constant with respect to A

and 2. Since the optimal price is surely not negative, we must have n>1.

-15-




Under the assumptions (28) and (30), we can write, from (4),

(32) R(p,A,z) = (p-7) £,(p) £(A) £5(2)
= R (p) £,(A) £5(z) ,
where

R (p) = (p-7) £,(p)

A A
Te price, P , maximized Rl(p) ; let R = l(p) . Then

ﬁ(A,z) = ﬁl fa(A) f3(z) . If we now apply (15), we have
(33) £5(A%) = (o + 8)/R) £5(2)

and the second-order condition for an optimum is that fg(A*) <0

If we differentiate (33) with respect to a , we have

£3(ax) (3 A%/da ) = 1/R, £,(2)
and therefore

(3%) OA%*/d o= O A*/0 8 < O
For constant z , we can apply (25) to find
(35) da*/d a=8(0 A¥/d a)< 0

If, on the other hand, we substitute (34) into (26), the sign remains
ambiguous.

For any given p , Rl(p) is a decreasing function of 7 ; hence,
the maximum value, Rl , must also decrease as y increases. Then
the right-hand side of (33) increases with y ; since fg <0,

(36) d A*/d y <O

To find the effect of ¥y on the price, p , we note that the

latter is defined by the condition,

-16-




Under the assumptions (28) and (30), we can write, from (4),

R, (2) £,(A) £3(2)

where
A A A
The price, P , maximized Rl(p) ; let R = Rl(p) . Then

a(A,z) = ﬁl fe(A) f3(z) . If we now apply (15), we have
(33) £3(8%) = (a4 8)/R £(2)

and the second-order condition for an optimum is that fg(A*) <0

If we differentiate (33) with respect to «a , we have

£2(A%) (3 A%/da ) = 1/R, £,(2)
and therefore

(34) OA*/d o= O A*/d 8 < O
For constant 2z , we can apply (25) to find
(35) da*/d a=8(d A*¥/d a)< O

If, on the other hand, we substitute (34) into (26), the sign remains
ambiguous.

For any given p , Rl(p) is a decreasing function of 7 ; hence,
the maximum value, Rl » must also decrease as 7y increases. Then
the right-hand side of (33) increaées with 7 ; since f; <0,

(36) dA*/d y <O

To find the effect of 7y on the price, p , we note that the

latter is defined by the condition,

-16-




bnl/bpso ’
Pr/pE<o
and that the second-order condition for a maximum is Rl/ p-<o0.

Then, as usual, we have

Since 2
o R
3-;,-7=-fi(1>)>0 s
(37) dp/dy >0

To sum up, it has been established that for multiplicative demand
functions and constant marginal costs, price is constant with respect
to income, the rate of interest or the rate of depreciation, and ilncreases
with marginal cost 7 , the stock of good will decreases as the rate of
interest or the rate of depreciation or the marginal cost increases,
and current advertising outlay decreases as the rate of interest increases
for fixed =z

We now move to the still more specific hypothesis, (29), that the
demand function is linear in the logarithms. The second-order conditions
now imply that B <1 . From (17), we now find that the optimal good
will is a constant proportion of sales. But note that, since 2z may be
changing over time, sales may not remain constant, in which case A¥* will
also change.

We may solve (29), (31), and (17) for A* as a function of z :

1-
(38) A% = [ %‘% G-8) A ) n/(-8),t/(1-8)

-17-




Thus A* 1is a function solely of the time path of income and of the
parameters, @ , B, 7 , 8, n , and { . The parameter k may be
thought of as defining the units nf =z ; hence, we may set k=1 without
loss of generality.

If z 1is not held constant over time, the results given by (35)
no longer hold because the effects of increasing income may offset the
effects of changes in the interest rate or depreciation rates. Differen-
tiating (38) with respect to time and substituting the result in (1),

we find

(39) ax(t) = [8 + pog($2 /2)1ax

where A* 1is given by (38). We will suppose that income (or whatever
other demand shifter z is taken to represent) is changing or expecting

to change at a constant proportional rate, p , so that
dz
(40) a%/z = p , constant.

Under these conditions, it may easily be verified that the

assumptions (A) and (B) of Theorem 3 are equivalent to the conditions,

(41) a>¢ge/Q-p)>-8 ,

and these will be assumed in the following. (If the second inequality

is reversed, then obviously the optimal policy is never to advertise.)
Thus, we may consider the effects of changes in seven parameters:

a,B,7”,8,1n,p, and { on optimal current advertising expenditure.

Rather than discuss all the possible effects, however, we shall limit

ourselves to the effects of changes in the interest and depreciation

rates, ¢ and & , and leave the remaining analyses to the reader.

-1R.
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Differentiating a* with respect to a , we find

da¥*

. o .
e) 56 = 1+ =58 (tad)e) (o Itrey < © -

so that an increase in the interest rate always reduces optimal current
advertising expenditure. On the other hand, differentiating with respect

to & , we find
gp
1-8)a-88] -

Thus, the effect of a change in the depreclation rate upon optimal current

advertising expenditures depends upon the relationships among all the
parameters.

More useful conclusions may be drawn by expressing optimal advertising
expenditures as a ratio to sales. Let this ratio be o ; substituting

for A* in (39),from (17), we obtain

(k) °=TL)-na+6 (6+§:§)

If the value of o computed from (44) is negative, then the optional
policy is zero advertising. Thus, assuming, as we have, that income

(or any other demand shifter) changes at a constant proportional rate
(which may be zero) implies that firms should try to keep a constant
ratio of sales to advertising. It is interesting to note that firms
really do seem to follow this rule of thumb. Borden (3, pp. T21-22]
reports that in 1935 the Association of National Advertisers found that
of 215 companies investigated, 54 per cent stated that their advertising
appropriations were determined as a percentage of sales, either of the

past year or expected in the year of the budget, and another 16 per cent
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stated that their appropriations were guided in part by a percentage of
sales. While the evidence is meager, what there is does suggest that
the model developed here is plausible.

The parameters of the model enter into the determination of the
optimal ratio of advertising to sales in a much simpler manner than
they do in the determination of the absolute level of optimal current
advertising. It is therefore easier to discuss the effects of changes
in these parameters on the optimal ratio. The derivatives of the ratio

with respect to these parameters are given in the table below.

Table. Effects of Changes in o, B,7,8,9,p, &nd { upon o .

Parameter Derivative of o with respect Sign of the derivative of
to the parameter (o}
-0
@ a+ b =0
. 2
B (1-p)78 + n(ows) to
> >0
n(o+8)(1-B)
4 0 ) =0
5 —L—é-(a - -{\-_-g) >0
n(os)
n i <0
n
p S
Worsy 15 >0
>0 if p>0
‘ o) (1)
<0 if p<oO
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Note that changes in marginal cost have no effect, an increase in
the interest rate or in the price elasticity of demand always reduces the
ratio, and that an increase in advertising effectiveness or in the rate
of growth of income always increases the ratio. The effects of a change
in the depreciation.rate, ® , always increases the proportion, in
contrast to its effect on the absolute level which is ambiguous. The
effect of a change in the income elasticity of demand depends on the

sign of p

5. Summary
In this paper we derive optimal advertising and price policies for

the individual firm under conditions of imperfect competition. OQur model
is simplified in the sense that it allows jump policies, which imply an
infinite rate of current advertising expenditure, in the initial period.
More realistic models may be developed by setting an upper bound on the
rate of expenditure (Arrow [1]) or by introducing a non-linear invest-
ment cost function (Strotz [9] and Nerlove {8]). Our model has the
advantage of consldering contraction as well as expansion policies.

When no factors operate to shift the demand function independently
of the firm's actions, we show that the optimal price and advertising
policies are stationary after a certain point. The concept 6f good
will, a stock related to the flow of current advertising expenditures,
is introduced. We assume that this stock depreciates at a constant
proportional rate, §, and that the future is discounted at a constant
rate of interest, @ . Although we find that changes in «a and o

affect the optimal good will in the same way, the effects upon current
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advertising expenditures and the time at which a stationary policy
commences are asymmetrical.

Analysis of the special case in which demand is linear in
logarithms and total cost is linear leads to more specific conclusions.
We show that the optimal stationary solution implies a constant ratio
of advertising to sales. Even in the non-stationary case, in which
other factors operate to shift the demand function, the same result is
obtained when these factors are assumed to change at a constant
proportional rate. This result is supported by some evidence on the

actual behavior of firms.
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Footnotes
The idea that advertising is a form of investment occurs in Hoos
[5].
See Borden (3], pp. 433-38.
Vidale and Wolfe [10] present a large amount of empirical
evidence that the effects of advertising linger on but diminish J
as time passes. As Waugh [11] has put it,"...0ld advertisements
never die -- they just fade away." Vidale and Wolfe studied a

number of situations in which an advertising campaign was run and

then all further advertising ceased; they were thus able to
ascertain the extent to which the effect of the campaign diminished
over time.

The assumption that the cost of adding to good will is always one,

no matter at what level current advertising expenditures are

carried on, is actually very unrealistic. At very high levels of
current advertising expenditure resort must be had to inferior media
so that the cocsts of adding a dollar's worth to good will must surely
rise with the level of expenditure. One possivle way of dealing

with this problem is to set a finite upper bound to current
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advertising expenditure, below which we assume & proportional cost
of adding to good will. This alternative has been discussed by
Arrow [1]. Alternatively and more generally, one might introduce
a non-linear cost function for additions to good will. This
procedure has been used in Strotz [9] and Nerlove [8] in connec-
tion with optimal investment policies. Lack of one or the other
of these assumptions leads to policies which may have a jump at

t = O . Since we are primarily interested in the characteristics
of the optimal policy after t = O , however, we shall restrict
ourselves to the simpler, but more unrealistic case.

One can conceive of a situation in which the effects of negative
advertising expenditure on demand could be achieved, namely, let
a firm advertise the product of a competitor. Unfortunately, to
achieve the same effect on net revenue as negative advertising,
one's competitor would have to pay double the amount of the
expenditure to the firm in question. This is hardly plausible.
For thils reason, and since good will cannot be sold in any other
way without selling the entire firm, we rule out negative current
advertising expenditures altogether.

The concept of exronentially depreciating good will was essentially
introduced by Waugh [11]. It leads in the discrete case to a
distributed lag model similar to the one employed by Jastram [6]
which in turn was based on the work of Koyck [7].

This section is largely based on the material given in [1].

Arrow [1] deals with the more general situation in which the net

profit function may have a finite number of distinct local maxima.
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10.

11.

Note, however, that the magnitude which is bounded is good will,

not current advertising expenditure. It is perfectly possible for

the latter to be unbounded even if the former is bounded.

Equation (15) is a generalization of the result obtained by

Dorfman and Steiner [4]. It states that at the optimal price

(price equal marginal production costs), the marginal revenue

from increased good will net of the marginal costs of producing

the increased output should be equal to the marginal opportunity
cost of investment in good will. To see this, note that the
instantaneocus rate of return on investment is @ ; the instantaneous
decay is 8 ; therefore, if the firm invests a dollar now and spends
it on advertising later, it makes «a and saves & . To put the
matter another way, a dollar invested in a bond will yield eom

in t periods, whereas a dollar invested in advertising will

require e-at further investment over the t periods to offset

decay, the opportunity cost is eat - e-St ; 50 that the marginal
opportunity cost at t =0 is o+ 8 .

This is the difficulty referred to in footnote 4. Modifying the
model in either cf the two ways suggested there would lead to a

policy without a Jjump.
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